

LMG611 Precision Power Analyzer with Dual Path

The Most Precise in its Class

As Compact Desktop Device with Touch Screen

LMG611 – powerful, convenient, flexible

Setting the bar in power analysis

For more than three decades, ZES ZIMMER has been focused solely on high-precision power measurement technology – so we know there is more to it than simply measuring current and voltage. Anyone who has tried to use generic systems for power measurement will have rapidly run up against their limits. What's the situation with com-

mon-mode rejection? Is the measurement result still reliable for power factors in the range of 0.01? Is the earth capacitance low enough to avoid interference by leakage currents? In what frequency ranges does the manufacturer guarantee the stated measuring accuracy? It quickly becomes clear that only a device designed specifically for power measurement can really satisfy these ambitious requirements. The ZES ZIMMER LMG611 stands out in the market for its extreme reliability, best-in-class accuracy, and maximum frequency range – the ideal prerequisites for excellent results.

For every application the adequate combination of bandwidth, accuracy and costs

Power analyzers are available in different accuracy classes to allow the user to choose the right tool for the job at hand. After all, not all applications require maximum precision; often lower resolutions and frequency ranges are sufficient. Unfortunately, not all measuring applications observe this distinction. It is entirely possible, for instance, to have need of different frequency ranges and accuracy levels at different points in the same measurement configuration. This is why the LMG611 is offered in three different types, which ensures that you always have a measuring device tailored to your needs for your particular application, without having to accept trade-offs in accuracy or take a sledgehammer to crack a nut, if a lower price solution could have served your purposes equally well.

Gapless/zero-blind measurement

In the course of stricter monitoring of the consumption and efficiency of electrical devices, new standards and procedures are continuously being introduced (e.g. SPECpower_ssj2008, IEC 62301, EN 50564), in order to enable an impartial comparison of products from different manufacturers. Be it an office computer, server or household appliance, the same principle applies: the procedure always requires long term analysis of the power consumption, taking into account all relevant operating conditions. The differences between minimum load - e.g. in standby - and full load can be of a significant magnitude, which makes precise measurement very challenging (see also application report no. 102 <u>"Mea-</u> <u>surement of standby power and energy</u> efficiency" at www.zes.com). Some of the measurements required must be performed over several hours, yet without gaps. By selecting a sufficiently high measurement range, changing ranges and the inevitably associated losses in data can be avoided. The high basic accuracy of the LMG611 ensures precise measurement results, even near the lower limit of a range.

Measuring in two bandwidths at the same time, thanks to DualPath - no compromises, no doubts

On conventional power analyzers, a signal first undergoes analog conditioning, followed by optional anti-aliasing filters, to then be fed into an A/D converter. The resulting signal can afterwards be used for the calculation of cycle-based rms values, or alternatively serve as the base for an FFT or further digital filtering. Due to the limitation to a single A/D converter, there are inherently some downsides to be factored in with conventional devices. If measurements are carried out with filters active, in order to avoid aliasing with FFTs, then the wide-band values are lost. With the filters switched off, strictly speaking, FFTs should not be used. If, in spite of this, FFTs are used without an anti-aliasing filter for measurements across the full frequency range, then the quality of the calculated values is questionable. An aliasing error of 50%, for instance, is easily detected, however a deviation of 0.5% could go unnoticed. Ultimately, when you alternate filtered and non-filtered measurements, the validity of the results is equally in question, as this involves the assumption that the signal does not change over time, which is in practice hardly ever the case. In addition, this procedure is especially time consuming.

In the end, this makes all of the measurement methods presented an unsatisfactory compromise. This is why ZES ZIMMER has fundamentally redesigned signal processing and developed the DualPath architecture. The analog side is the same as in conventional measuring devices, however the subsequent digital processing has been revolutionized. The LMG611 is the first power analyzer to have two A/D converters in two independent signal paths; One, for the filterless measurement of the wideband signal, and another, for the narrow-band signal at the output of the anti-aliasing filter. The parallel processing of the digitized sample values gives the user access to both measurements of the same signal, without risking aliasing effects. This unique procedure avoids all of the downsides of previous approaches and guarantees the most precise result in the shortest time possible.

Precise measurements thanks to minimal delay differences

The fast-switching semiconductors used in modern frequency converters to improve efficiency produce extremely steep voltage edges. The resulting capacitive currents put strain on the bearings and the insulation of the motors – this can lead to premature failure.

Motor filters (e.g. dU/dt filters) attenuate the steep voltage gradient, although they generate power losses themselves due to the transient oscillation with the filter's own frequencies (typically > 100 kHz). The broad frequency range and the minimal delay between current and voltage on the LMG611 allow extremely precise power loss measurements on the filters at these frequencies, including longitudinal measurements at low power factors. This also applies to power measurements with high frequency ranges of up to 10 MHz, which require the current and voltage channels to be designed for the smallest delay differences. On the LMG611 the offset is less than 3 ns, corresponding to a phase error <1 µrad at 50 Hz. This makes the devices best suited to measure the power losses at low phase angles for transformers, chokes, capacitors and ultrasonic generators. No additional options or adjustments are required; the LMG611 is already fully capable of this measurement task with the standard factory settings. Usually current and voltage transducers are used for measurements on high-power circuits. The phase angle of these transducers can be corrected to improve measurement accuracy.

Easy to use – with or without touchscreen

To ensure that the LMG611 can be used in all conditions, particular attention has been paid to universal operability. All display modes and setting options can be operated both with the touchscreen or the keypad, without exception. The optimized design consistently produces a direct reference between the keypad and the associated views and setting options on the screen. To use the device effectively requires practically no familiarization. The graphical user interface directs the user precisely to the required results, without detours. Be it effective values for voltage or current, associated harmonics or cumulative values, they are only a single press of a button away. In addition, user-defined views allow to group together measured values of one's choice, so that all the parameters that are important are always available at a glance. This ergonomic means of operation and the associated time savings contribute directly to the productive use of the LMG611. The eight context-specific double softkeys to the right of the display, whose function always corresponds to their onscreen counterparts on the right-hand side of the screen, are especially important for ease-of-use. One can determine the function assigned to a given softkey at a glance. The double softkey design enables the respective parameter to be rapidly configurable; switching through views that are not relevant is no longer necessary. Should there be questions as to function and control while operating the device, the relevant sections of the manual can be displayed at any time.

Superimposed help text from manual

Range extension with sensors? Plug 'n' Measure!

Although the LMG611 offers unmatched dynamic range, both for voltage and current, there are always applications with extraordinary requirements in terms of measurement ranges. Whether you are dealing with currents of several hundred amps or voltages of several kilovolts, ZES ZIMMER has the right solution at the ready. We offer a wide range of current and voltage sensors, which work perfectly in unison with the LMG611 precision power analyzer and extend the measurement ranges of the device by the required amount. The sensors of our Plug 'n' Measure series are equipped with a bus system, which enables automatic configuration of the LMG611. This allows for all of the important parameters, such as the precise scaling factor, the delay compensation variable, the last calibration date, and the sensor type, to be read and used automatically by the power analyzer. Moreover, the sensors are actively supplied with power by the LMG611, separate power supplies are no longer required.

With Plug 'n' Measure there is no need for fine tuning by the user to improve the results. There is no difference between direct and sensor-supported measurements. Of course, other commercially available sensors can also be used with the LMG611.

Sensor Type PCT

Everything important just a click away

PC	DWER L60	CH-A2							Display
									Harmonics
	Ph		W Qh	-8.3		r Q _{tot}	68.525		Harmonics
		68.0131	var Sh		047 VA	φfurd			Ocid & Even
	f ₁								Value
									\succ
0									
				4.928					
				0.245			-0.184		\square
									Amplitudes
									Absolute
<u>_</u>	0.000	11		0.000	174		0.000		
Q -	503.0 ms 49.98	Hz							
an c	°a 123 1 ∉	250.0 V 600-0 =A	Ŧ						
		A							

of cycle time or reference

Click on the group: configuration of activation, synchronization, filters, etc.

LMG600 series: Testing without disruption – five in one

In a typical test scenario, the way from raw signals to the final pass/fail indication is a long and winding path stretching over five distinct phases. Computing RMS power is only one piece of the puzzle, and data from other sources might need to be integrated into the calculations. This can lead to a complex assortment of data sources and processing tools with many handover points. The discontinuities in the flow of data may require manual intervention, which demands time and effort and increases the risk of introducing errors.

The LMG600 is designed to combine all five phases of testing into a single instrument, thus eliminating unnecessary complexity, streamlining the testing process, making test engineers' life easier and keeping cost down.

1. **Signal acquisition**: the LMG600 goes beyond voltage and power. The versatile Process Signal Interface (PSI) can read virtually any analog or digital signal source, thus allowing e.g. temperature, pressure, speed, torque and other data to be collected together with voltage and current. No need to reconcile data points from different sources later on, no issues with inconsistent timestamps between variables.

2. Timing control: for the test results to be meaningful, the DUT needs to be observed in specific, predefined modes of operation. The LMG600 can control beginning and end of the measurements via the versatile Event Trigger option. In addition, it can react to external trigger inputs or CANbus commands to start recording data. The LMG600 can also control external devices via a number of analog and digital outputs in the optional PSI.

3. **Integration**: to calculate RMS voltage, current and power as well as harmonic values, the samples need to be summed over entire signal periods – this is the traditional domain of power analysis. (Outsourcing the calculation to PC environments already at this step renders the

integrity of RMS values and harmonics vulnerable and makes calibration of the setup rather difficult.)

4. Derivation: in many applications, the measurement of electrical quantities is just a means to an end and not the final goal. An illustrative example is the qualification of inductive components: measuring voltage and current ultimately yields core losses and the peak values of magnetic field strength and flux density. Rather than exporting electric measurements to 3rd party applications for the calculation of the desired results, the LMG600 offers a powerful built-in programming language with a vast number of mathematical functions to carry out all required calculations in one fell swoop. No handover, no disruptions, no risk of additional errors.

5. **Pass/fail decision:** In case the DUT is tested against defined standards or previously established benchmarks, the pass/fail limits can be programmed into the LMG600 in order to allow the instrument to display the outcome of the test directly. Should there be different pass/fail criteria for consecutive DUTs, applicable limits can even be adjusted on-screen by the test engineer use the touchscreen GUI's input boxes or arrow keys. Some tests

require additional information (like e.g. magnetic path length, core diameter etc.) on the DUT that varies between tests and also needs to be considered for calculation. Also this kind of data can be entered and changed directly on-screen using a number of available input elements. These built-in decision-support features allow even less experienced or less well-trained users to reliably judge success or failure of the test.

Environment variables

In the example above, power P1 is compared to environment variable 1, which can be adjusted on-screen using the depicted arrow softkeys.

Signals

The values assumed by enviroment variables can be color-coded to alert the user to the status of the DUT or to indicate the outcome of the measurement e.g. pass/fail.

Switching keys

The status of the softkeys can be queried by the script. Those keys can act as push button, toggle or latching switches.

Five in one example: automated magnetic core testing

Core Characteristics Electric Drive Wide vs. Narrow Device Example Magnetic core testing Image: state of the	Tes Magnetic I B _{pk} = 0. Magnetic F H _{pk} = 175	Flux Density: 60800 T ield Strength: 5.4024 A/m In this example the ma from voltage, current ar lated. The script editor logical and procedural p conditional execution op	haracteristics and loss =p1111?*\$n1/\$n2 //Powe = urec1111?/(4*fcyc111 netic flux density = Ipk*\$n1/\$lmagn // pe = Bpk/0.0000012566/Hpk meability ngnetic field strength and flux density nd frequency measurements are calcu- offers a vast variety of mathematical, programming functions like loops and f commands.
or photographs to depict your service your brand logo and reflect your brand logo and	editor t vary ants. tup and freely arrange them. Add ir corporate style in the choice of colors and design elements. CUSTOM Intro I Intro II Electric Magn nprim: ↓ 20.0 ft nsec: ↓ 25.0 ft Cross section: ↓ 6.5 m ft Magn. Path length: ↓ 1000 ft Primary Current: allow of the	Drive Wide vs. Narrow View 5 Cor netic core te P P Core Lossee:	e Characteristics Script Samples Mode View Copy Magnetic Flux Density: $B_{pk} = 0.60800 T$ Magnetic Field Strength $H_{pk} = 175.4024 A/m$ Secondary Voltage:
Jor In-/ decrementing the chosen variables, and number can be entered directly as well. nprim: ↓ 20.0 ° nsec: ↓ 25.0 ° Cross section: ↓ 6.5 m ° Aagn. Path length: ↓ 100.0 m ° Add measurem ted in, and only can display any by the power from any. Primary Current: Iprim = 21.257 mA	ent values you are interes- y show what you need. You electric quantity measured trchannels as well as values I/O interface (CAN, GPIO).	P _{fe} = 7.057 W Passed	Sec - 448.971 IIIV

Application Switched-mode power supplies

Already years ago, advances in power electronics have caused relatively large and heavy transformer power supplies to be replaced by smaller, lighter and more efficient switched mode power supplies. Today those can be found in practically all grid-powered electrical devices. While avoiding many of the downsides of their predecessors, they also bring new challenges: for one, the conducted emissions due to harmonics are not insignificant and must be limited by standards (EN61000-3-2, EN61000-3-12). Secondly, the high switching frequencies of up to several hundred kilohertz can lead to problems with electromagnetic compatibility, both on the grid side and on the consumers' part. The role of power measurement technology is to support the manufacturer in optimizing their products.

CHALLENGES

- Gapless, standards-compliant measurement of harmonics
- \cdot High frequency range for analysis of conditions at pulse frequencies >300 kHz
- \cdot Quick and gapless sampling for measuring steep switching flanks
- Reliable measurement even at power factors $\lambda < 0.01$

Application

Solid & laminated magnetic cores

Under the influence of changing fields, the ferromagnetic components of an electrical machine are subject to losses due to continuous remagnetization and eddy currents, which are ultimately converted into heat or vibrations. The total losses are frequency-dependent and should be minimized as far as possible, as they have a significant effect (for example) on the range of the batteries in electric vehicles. The core power loss can be calculated directly from the excitation current of a test winding and the magnetization voltage of a sensor winding. The magnetic flux density in the core material can be derived from the rectified value of the voltage induced in the sensor winding. The magnetic field strength is proportional to the current flowing in the test winding. While the high-frequency currents in solid cores can be measured directly, the high amp values occuring in laminated cores usually demand high-precision transducers.

CHALLENGES

- \cdot Precise determination of the active power, even at lowest power factors (λ < 0.01) and very low voltages
- Calculation of a multitude of derived variables such as peak value of field strength (H_{pk}), magnetic flux density (B_{pk}), and amplitude permeability (μ_a)
 Convenient integration of transducers for high currents

Application

Batteries

With the significance of battery efficiency playing a dominant role in electrical vehicles and renewable energy systems, careful design as well as accurate monitoring of the electrical properties of a battery is crucial during their development. In addition to continuous monitoring and recording of the electrical characteristics during entire and consecutive charging/discharging cycles, the LMG611 allows for easy an integration in test benches, by intuitive user defined control panels with the Custom Menu and direct control of the entire test bench using the Script Editor and the GPIO interface.

CHALLENGES

- Highly precise DC measurement
- Monitoring and logging of long charge discharge cycles
- · Calculation of advanced parameters with custom formulas
- Full test bench automation

Application CE compliance testing for harmonics and flicker

Electrical equipment, systems and devices must satisfy the directives and ordinances of the EU on the permitted level of electromagnetic emissions and immunity to electromagnetic effects, if they are put on the market inside the European Union (EU). Two different types of grid emissions are tested: harmonics and flicker. Any electrical device with a non-linear load characteristic produces current harmonics. Due to the impedance of the grid, these cause drops in voltage and resulting distortions. In addition, certain devices (e.g. continuous-flow heaters, heating furnaces, et cetera) control their power consumption by abruptly switching on and off, which destabilizes the voltage level due to the grid impedance. This produces fluctuations in voltage, which trigger variations in brightness in the electric lighting ("flicker"). In combination with a suitable AC source and reference impedance, the LMG611 is the tool of choice for the qualified assessment of harmonics and flicker. The LMG Test Suite (see accessories) is providing a user-friendly software solution for this, which turns performing conformity tests for electromagnetic compatibility into child's play.

CHALLENGES

- · Verification of absence of distortions and voltage stability of the source
- · Measurement of signals at significantly different levels
- · Clearly organized management of a multitude of measured values

Application Energy metering

The advancing proliferation of DC charging stations for electric vehicles - where the DC energy transferred needs to be accurately measured for accounting purposes – is driving the demand for DC meters. To ensure proper verification, calibration and certification of the DC meter used (e.g. E-VDE-AR-E 2418-3-100), the LMG611 captures and synchronizes its measuring cycle to the DC meter's pulse output to provide a meaningful conformity test, customizable to the requirements utilizing the in-built script editor.

CHALLENGES

- Highly precise DC energy measurement
- \cdot Synchronization to the energy meter's pulse output
- Customization of test settings and sequences
- Provision and logging of meaningful results

Application

Lighting technology

In an effort to reduce energy consumption, light bulbs are being replaced with ever more efficient light sources all around the world. While on the consumer end all that is required is to insert a new product into the existing fitting, the differences on the electrical level are considerable – in contrast to conventional bulbs, LED lights and compact fluorescent lights ("low-energy light-bulbs") are controlled by special electronic ballasts. Some of these ballasts work with switching frequencies of up to 200 kHz and produce signal distortions at frequencies of up to 1 MHz. The manufacturers are required first and foremost to prevent damaging circuit feedback, and secondly, to ensure optimum service life for their products. To achieve the aforementioned objectives, often a controlled warm start is performed, whose proper execution has to be verified by making appropriate measurements.

CHALLENGES

- \cdot Broad frequency range of the measurement, hand-in-hand with a high level of precision
- Verification of standby power of ballasts even for $\lambda < 0.01$
- Minimal earth capacitance to avoid leakage currents during the measurement

Accuracy specification

A channel	± (% of measured value + % of maximum peak value)													
Accuracy	DC DC e ³ 0.05 Hz 45 Hz 65 Hz 3 kHz 45 Hz 65 Hz 3 kHz 10 kHz 0.02±0.08 0.02±0.06 ⁴⁰ 0.01±0.03 0.01±0.02 0.02±0.06		10 kHz 50 kHz	50 kHz 100 kHz	100 kHz 500 kHz	500 kHz1 MHz	1 MHz 2 MHz	2 MHz 10 MHz						
Voltage U*	0.02+0.08	0.02+0.06 °) 0.015+0.03 0.01+0.02 0.03+0.06 0.2+0.4		2+0.4	0.5+1.0	0.5+1.0 f/1MHz*1.5+		+f/1MHz*1.5						
Voltage U _{SENSOR}	0.02+0.08	0.02+0.06	e) 0.015+0.03	0.01+0.02 0.03+0.06		0.2+0.4		0.4+0.8	0.4+0.8	f/1MHz*0.7	f/1MHz*0.7 + f/1MHz*1.5			
Current I* 5 mA5 A	0.02+0.1	0.02+0.06	e) 0.015+0.03	0.01+0.02	0.01+0.02 0.03+0.06		0.2+0.4		0.5+1.0	f/1 MHz*1.0 + f/1 MHz*2.0	-			
Current I* 10 A32 A	0.02+0.1 ¹⁾	-	0.015+0.03 ³⁾	0.01+0.02 ³⁾	0.1+0.2 ³⁾		f/100 kHz*0.8 +	- f/100 kHz*1.2 ³⁾	-	-	-			
$Current~\mathbf{I}_{_{SENSOR}}$	0.02+0.08	0.02+0.08 0.02+0.06 ^{e)}		0.01+0.02	0.03+0.06	0.2	0.2+0.4		0.4+0.8	f/1MHz*0.7	/1 MHz*0.7 + f/1 MHz*1.5			
Power U*/I* 5mA5A	0.032+0.09 0.032+0.06		5 ^{e)} 0.024+0.03	0.015+0.01	0.048+0.06	0.3	2+0.4	.4 0.8+1.0		f/1MHz*2.0+ f/1MHz*1.8	-			
Power U*/ I* 10 A32 A	0.032+0.09 ²⁾	-	0.024+0.034)	0.015+0.014)	0.104+0.134)	0.4+0.54)	f/100 kHz*0.8+ f/100 kHz*0.8 ⁴⁾	f/100 kHz*1.0 + f/100 kHz*1.14)	-	-	-			
Power U*/ I _{sensor}	0.032+0.08	0.032+0.0	5 ^{e)} 0.024+0.03	0.015+0.01	0.048+0.06	0.32+0.4		0.72+0.9	0.72+0.9	f/1MHz*1.8	+f/1MHz*1.5			
Power U _{SENSOR} / I* 5 mA5 A	0.032+0.09 0.032+0.06		5 ^{e)} 0.024+0.03	0.015+0.01	0.048+0.06	0.3	0.32+0.4		0.72+0.9	f/1MHz*1.4+ f/1MHz*1.8	-			
Power U _{SENSOR} / I* 10 A32 A	0.032+0.09 ²⁾ -		0.024+0.03 ⁴⁾	0.015+0.014)	0.104+0.134)	0.4+0.54)	f/100 kHz*0.8+ f/100 kHz*0.8 ⁴⁾	f/100kHz*1.0+ f/100kHz*1.04)	-	-	-			
Power $U_{\text{sensor}} / I_{\text{sensor}}$	NSOR 0.032+0.08 0.032		5 ^{e)} 0.024+0.03	0.015+0.01	0.048+0.06	0.3	2+0.4	0.64+0.8	0.64+0.8	s f/1MHz*1.1+f/1MHz*1.1				
B channel	± (% of measured value + % of maximum peak value)													
Accuracy	DC		0,05 Hz 45 Hz 65 Hz 1 kHz	45 Hz 65 Hz		1 kHz 5 kHz 5 kHz		2 20 kHz	20 kHz 100 kH	z 1	100 kHz 500 kHz			
Voltage U*	0.1+0.1		0.1+0.1	0.03+0.03		0.2+0.2	0.2+0.2 0.3		0.4+0.8	f/10 f/1	f/100kHz*0.8+ f/100kHz*1.2			
Current I* 5 mA5 A Current I _{SENSOR}	0.1+0.1		0.1+0.1	0.03+0.03		0.2+0.2	0.2+0.2 0.		0.4+0.8	f/10 f/1	f/100kHz*0.8+ f/100kHz*1.2			
Current I* 10 A32 A	0.1+0.1)	0.1+0.1 ³⁾	0.03+0.03 ³⁾		0.2+0.2 ³⁾	0.	6+1.2 ³⁾	1.5+1.5 ³⁾	f/10 f/1	00 kHz*2.0 + 00 kHz*2.0 ³⁾			
Power U*/ I* 5 mA5 A Power U*/ I _{SENSOR}	0.16+0.1		0.16+0.1	0.05+0.02		0.32+0.2 0.		48+0.4	0.64+0.8	f/10 f/1	0 kHz*1.28 + 00 kHz*1.2			
Power U*/ I* 10 A32 A	0.16+0.1 ²⁾		0.16+0.14)	0.05+0.02 ⁴⁾		0.32+0.24)	0.32+0.2 ⁴⁾ 0.72+0.8 ⁴⁾		1.52+1.154)	f/10 f/1	f/100 kHz*2.24 + f/100 kHz*1.64			
C channel					± (% of measu	ium peak value)								
Accuracy	DC		0,05 Hz 45 Hz 65 Hz 200 Hz	0,05 Hz 45 Hz 65 Hz 200 Hz 45 Hz		. 65 Hz 200 Hz 500 Hz		500 Hz 1 kHz		2 k	2 kHz 10 kHz			
Voltage U*	0.1+0.1		0.02+0.05	2+0.05 0.02+		0.05+0.05 0.		.2+0.1 1.0+0.5		f/1kHz*1.0+ f/1kHz*1.0				
Current I*	0.1+0.1 ¹)	0.02+0.05 ³⁾	0.02+	•0.02 ³⁾	0.05+0.05 ³⁾ (2+0.1 ³) 1.0+0.5 ³)		f/: f/	1 kHz*1.0 + 1 kHz*1.0 ³⁾			
Current I _{SENSOR}	0.1+0.1		0.02+0.05	0.02+	+0.02	0.05+0.05	0	.2+0.1 1.0+0.5		f/: f/	1 kHz*1.0 + ′1 kHz*1.0			
Power	0.16+0.1	2)	0.032+0.05 ⁴⁾	0.03+	0.014)	0.08+0.054)	0.3	32+0.1 ⁴⁾	1.6+0.54)	f/: f/	1 kHz*1.6 + 1 kHz*1.04)			
Accuracies valid for:	1. Sin 2. Am 3. Wai 4. The pea	usoidal volt bient tempe rm-up time maximum p ik value for	ages and currents rature (23±3) °C Lh eak value for power i roltage and the maxi		5. 0 ≤ λ ≤ 1 (power factor) 6. Current and voltage 10% 110% of nominal value 7. Adjustment carried out at 23 °C 8. Calibration interval 12 months									
Other values	All other values are calculated from current, voltage and power. Accuracy resp. error limits are derived according to context (e.g. $S = I^* U$, $\Delta S / S = \Delta I / I + \Delta U / U$).							itext						

 $^{\scriptscriptstyle (1)\,2)\,3)\,4)}$ only valid in range 10 ... 32 A:

¹⁾ additional uncertainty $\pm \frac{80\,\mu\text{A}}{A^{2.1.1}} * I_{umS^{2.1.1}} * I_{amS^{2.1.1}} * I_{umS^{2.1.1}} * I_{umS^{2$

Voltage measuring ranges U*																
Nominal value (V)	3		6	12.5		25		60	130		250	400		600		000
Max. trms value (V)	3.3		6.6	13.8		27.5		66	136		270	440		660		000
Max. peak value (V)	6 1		12	25	25 50			100	200		400	800	:	1600		200
Overload protection		1000V + 10% continuously, 1500V for 1 s, 2500V for 20 ms														
Input impedance		2.69 MΩ, 4 pF														
Earth capacitance		< 90 pF														
Current measuring ranges I*																
Nominal value (A)	0.005	0.01	0.02	0.04	0.08	;	0.15	0.3	0.6	1.2	2.5	5	10	2)	32
Max. trms value (A)	0.0055	0.011	0.022	0.044	0.08	8 (0.165	0.33	0.66	1.32	2.75	5.5	11	2	2	32
Max. peak value (A)	0.014	0.028	0.056	0.112	0.22	4 0	0.469	0.938	1.875	3.75	7.5	15	30	6)	120
Input impedance	ca. 2.	2Ω		ca. 600 n	Ω			ca.80mΩ			ca. 20 mΩ	ıΩ ca. 10 mΩ				
Overload protection permanent (A)				LMG in o	peration 1	0 A						LMG in c	peration 32	A		
Overload protection short-time (A)				150 A fo	or 10 ms											
Earth capacitance								< 9	OpF							
Sensor inputs U _{SENSOR} , I _{SENSOR}																
Nominal value (V)	0.03		0.06		0.12).25	0.5		1		2	2		
Max. trms value (V)	0.033	3	0.066		0.132		C	.275	0.55	;	1.1		2.2		4.4	
Max. peak value (V)	0.097	7	0.1953		0.3906		0	.7813	1.56	1.563 3.125 6.25 12.5			5			
Overload protection							100	V continuou	ısly, 250V fo	r 1s						
Input impedance								100 kΩ	2, 34 pF							
Earth capacitance								< 9	0 p F							
Isolation	All current a Max. 1000 \	and voltag / / CAT II re	e inputs are esp. 600 V /	isolated a CAT III res	gainst each p. 300 V / I	n other, CAT IV	. against	remaining e	lectronics ar	ıd against e	earth.					
Synchronization	Measureme configurabl electronic lo	Measurements are synchronized on the signal period. The period is determined based on "external", u(t) or i(t), in combination with configurable filters. Therefore readings are very stable, especially with PWM controlled frequency converters and amplitude modulated electronic loads.														
Scope function	Graphical display of sample values over time in two scopes with 8 signals each															
Plot function	Two time (trend-) diagrams of max. 8 parameters each, max. resolution 10 ms															
External graphics interface (L6X1-OPT-DVI)	DVI) DVI interface for external screen output															
Harmonics at device level (L6-OPT-HRM)	onics at device level (L6-OPT-HRM) Harmonics and interharmonics up to 2000th orde			order, inde	pendent	it and sin	nultaneously									
CE Harmonics (L6-OPT-HRM)	According to IEC EN 61000-4-7															
Flicker (L6-OPT-FLK)	According to IEC EN 61000-4-15															
LMG Remote	LMG600 exp	ansion so	ftware, basi	c module f	or remote	configu	iration a	nd operatior	n via PC							
LMG Test Suite	LMG600 sof IEC EN 6100 IEC EN 6100 IEC 62301 8	tware for 6 0-3-2 & 61 0-3-3 & 61 6 EN 50564	conformity t 1000-3-12 fo 1000-3-11 fo 1000-3-11 fo 1000 standb	ests accor or harmoni or flicker (I y power (L	ding to: cs (LMG-TE .MG-TEST-C MG-TEST-CE	ST-CE-H E-FLK) E-STBY)	HRM)									
Miscellaneous Touch screen Dimensions Weight Protection class Electromagnetic compatibility Temperature Climatic category Line input	7 inch displ LMG611: Tal Depending EN 61010 (I EN 61326 5 40 °C (Normal env 100 230	ay (1024x6 ble-top ver on installe EC 61010, ' operation) ironmenta <i>I</i> , 47 63	500) rsion: (WxH: ed options: 1 VDE 0411), 1 VDE 0411), 1 0 / -20 50 L conditions Hz, max. 20	xD) 433 mr max. 7.2 kg protection o °C (storag according 00 W	n x 177 mm class I / IP re) to EN 6101	x 200 m 20 in ac 10	nm ccordanc	e with EN 60	1529							

Accessories program (excerpt)

Current senso	rs							
Type Rin			ing-type transduc	ers		Current	Shunt	
		0				\$	0	1.00
Name	РСТ	Hallxxx-L6	DS	WCT	LMG-Z5XX	L60-Z406, L60-Z60/66	L60-Z68	LMG-SH (-P)
Signal type		AC+DC			AC	AC	AC+DC	AC+DC
Current ranges	2002000 A _{rms}	1002000 A _{rms}	507000 A _{rms}	100 1000 A _{rms}	750 A _{rms} 10 kA _{rms}	403 kA _{rms}	1 kA _{rms}	22mA _{rms} 1A _{rms}
Best accuracy	0.01%	0.5%	0.01%	0.25%	0.02%	0.2%	2.0%	0.15%
Max. bandwidth	DC1MHz	DC100 kHz	DC1MHz	30 Hz 1 MHz	15 Hz 5 kHz	5 Hz 50 kHz	DC 2 kHz	DC 100 kHz
Power supply by LMG611	PCT200/600/1200	Yes	No	Not	required	Yes		Not required
Plug 'n' Measure	PCT200/600/1200	Yes	No		No	Ye	No	

Ingn-vollay	e dividers	5		
		A .	a adda	
			ИСТО	
Name	HST3	HST6	HS19	HST12
Name Signal type	HST3	HST6	+DC	HST12
Name Signal type Max. voltage	HST3 3.5 kV _{eff}	HST6 AC 7 kV _{eff}	+DC 10,5 kV _{eff}	HST12 14 kV _{eff}
Name Signal type Max. voltage Best accuracy	HST3 3.5 kV _{eff}	HST6 AC 7 kV _{eff} 0.0	HS19 +DC 10,5 kV _{eff} 05%	HST12 14 kV _{eff}
Name Signal type Max. voltage Best accuracy Max. bandwidth	HST3 3.5 kV _{eff}	HST6 AC 7 kV _{eff} 0.0 0 Hz	HS19 #+DC 10,5 kV _{eff} 05% 300 kHz	HST12 14 kV _{eff}
Name Signal type Max. voltage Best accuracy Max. bandwidth # of phases	HST3 3.5 kV _{eff}	HST6 AC 7 kV _{eff} 0.0 0 Hz 1	HS19 HDC 10,5 kV _{eff} 300 kHz to 3	HST12 14 kV _{eff}

Name	LMG-MAS	LMG-MAK1
Nominal voltage	250 V	300 V
Category		CAT III
Safety standard		IEC / EN61010-1
Socket for load connection	16 A 250 V CEE 7/4	10 A 250 V IEC 60320-C14

© 2024 - ZES ZIMMER Electronic Systems GmbH - subject to technical changes, especially product improvements, at any time without prior notification.

Germany (headquarters) ZES ZIMMER Electronic Systems GmbH Pfeiffstraße 12 • D-61440 Oberursel info@zes.com • +49 6171 88832-0 www.zes.com